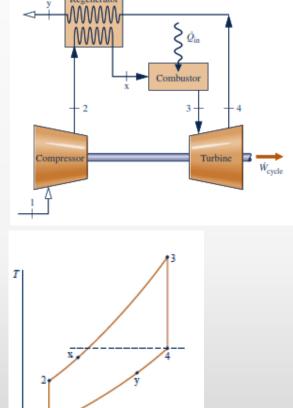


Gas Turbine Cycle

Lecture 5 Enhancements of gas cycle

Tikrit university\ engineering college\ mechanical dept.

Regenerative gas turbine


The turbine exhaust normally well above the ambient temp, though the exhaust gas has a potential for use (exergy). One way of utilizing this potential is by mean of heat exchanger called regenerator which allows the air exiting the compressor to be preheated before entering the combustor.

- The regenerator shown is counter flow H\E. Ideally no frictional pressure drop occurs in either streams.

- The turbine exhaust gas is cooled from state 4 to state y, while the air exiting the compressor is heated from state 2 to state x.

Hence, the combustor is required only to increase the air temp from state x to state 3 rather than from state 2 to state 3.

2

Regenerative gas turbine

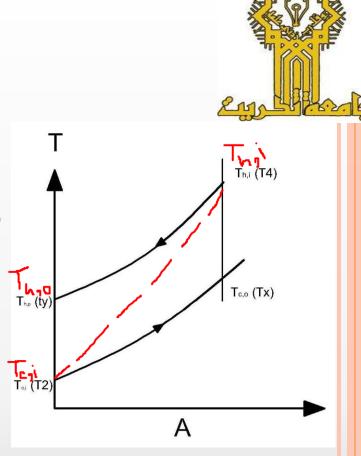
The heat added per unit mass flow is then:

 $q_{add} = h_3 - h_x$

The net work developed per unit mass flow is not altered by the addition of a regenerator. Thus, since the heat added is reduced, the thermal efficiency increases.

- From the relation $(q_{add} = h_3 - h_x)$ it can be concluded that the external heat transfer required by a gas turbine power plant decreases as the specific enthalpy h_x Increase, and thus as the temp T_x increases. educed, the thermal

5


Regenerative gas turbine

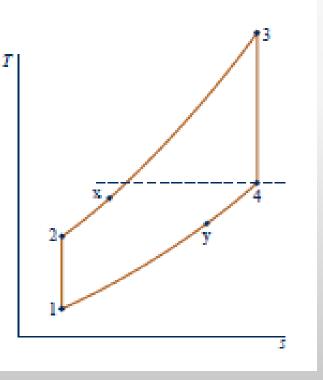
- we can conclude from figure that the max theoretical value for the temp T_x is the turbine exhaust temp T_4 .

- Regenerator effectiveness is defined as the ratio of the actual enthalpy increase of the air flowing through the compressor side of the regenerator to the max theoretical enthalpy increase, that is:

 $\varepsilon_{reg} = \frac{h_x - h_2}{h_4 - h_2}$ as heat transfer approaches reversibility, h_x approaches h_{4} and ε_{reg} tends to unity (100%).

In practice, ϵ_{reg} values typically range from 60 – 80%. To increase this range, we have to increase the H\E surface area, but it causes high cost and results in significant frictional pressure drop for flow through the generator.

example


1. Air enters the compressor of an ideal air – standard cycle @ 100 kPa, 300 K with a volumetric flow rate of $5\frac{m^3}{s}$. The compressor pressure ratio is 10. The turbine Intel temp is 1400 K. A regenerator is incorporated in the cycle. Determine the thermal efficiency of the cycle for a regenerator effectiveness of 80%.

Sol.

a. State 1@ 300 K From air tables at 300 K, $h_1 = 300.19 \text{ kJ/kg}$, $Pr_1 = 1.386$ State 2@ P = 1 Mpa For isentropic compression:

$$P_{r2} = P_{r1} \left(\frac{p_2}{p_1}\right) \implies p_{r2} = 1.386 * 10$$

 $P_{r2} = 13.86$

By interpolation, $h_2 = 579.86 \text{ kJ/kg}$

example

State 3 @ 1400 K $h_3 = 1515.42 \text{ kJ/kg}, \text{Pr}_3 = 450.5$

State 4 @ 1 bar

$$\frac{Pr_4}{P} = Pr_3 \frac{P_4}{P_3} = 0.1*450.5 = 45.05$$

By interpolation: $h_4 = 808.5 \text{ kJ/kg}$ to find the specific enthalpy h_x : $\varepsilon_{reg} = \frac{h_x - h_2}{h_4 - h_2} \implies 0.8 = \frac{h_x - 579.86}{808.5 - 579.86} \implies h_x = 762.77 \text{ KJ/Kg}$

Then the thermal efficiency is:

$$\eta_{th} = \frac{w_{net}}{Q_{add}} = \frac{(h_3 - h_4) - (h_2 - h_1)}{h_3 - h_x} = 0.568 = 56.8\%$$

Gas properties **Gas**

756 Tables in SI Units

TABLE A-22 Ideal Gas Properties of Air

$T(\mathbf{K}), h \text{ and } u(kJ/kg), s^{\circ}(kJ/kg \cdot \mathbf{K})$											
				when	$\Delta s = 0^1$					when $\Delta s = 0$	
T	h	и	s°	$p_{\rm r}$	$v_{\rm r}$	Т	h	и	s°	$p_{\rm r}$	$v_{\rm r}$
200	199.97	142.56	1.29559	0.3363	1707.	450	451.80	322.62	2.11161	5.775	223.6
210	209.97	149.69	1.34444	0.3987	1512.	460	462.02	329.97	2.13407	6.245	211.4
220	219.97	156.82	1.39105	0.4690	1346.	470	472.24	337.32	2.15604	6.742	200.1
230	230.02	164.00	1.43557	0.5477	1205.	480	482.49	344.70	2.17760	7.268	189.5
240	240.02	171.13	1.47824	0.6355	1084.	490	492.74	352.08	2.19876	7.824	179.7
250	250.05	178.28	1.51917	0.7329	979.	500	503.02	359.49	2.21952	8.411	170.6
260	260.09	185.45	1.55848	0.8405	887.8	510	513.32	366.92	2.23993	9.031	162.1
270	270.11	192.60	1.59634	0.9590	808.0	520	523.63	374.36	2.25997	9.684	154.1
280	280.13	199.75	1.63279	1.0889	738.0	530	533.98	381.84	2.27967	10.37	146.7
285	285.14	203.33	1.65055	1.1584	706.1	540	544.35	389.34	2.29906	11.10	139.7
290	290.16	206.91	1.66802	1.2311	676.1	550	554.74	396.86	2.31809	11.86	133.1
295	295.17	210.49	1.68515	1.3068	647.9	560	565.17	404.42	2.33685	12.66	127.0
300	300.19	214.07	1.70203	1.3860	621.2	570	575.59	411.97	2.35531	13.50	121.2
305	305.22	217.67	1.71865	1.4686	596.0	580	586.04	419.55	2.37348	14.38	115.7
310	310.24	221.25	1.73498	1.5546	572.3	590	596.52	427.15	2.39140	15.31	110.6
315	315.27	224.85	1.75106	1.6442	549.8	600	607.02	434.78	2.40902	16.28	105.8
320	320.29	228.42	1.76690	1.7375	528.6	610	617.53	442.42	2.42644	17.30	101.2
325	325.31	232.02	1.78249	1.8345	508.4	620	628.07	450.09	2.44356	18.36	96.92
330	330.34	235.61	1.79783	1.9352	489.4	630	638.63	457.78	2.46048	19.84	92.84
340	340.42	242.82	1.82790	2.149	454.1	640	649.22	465.50	2.47716	20.64	88.99
350	350.49	250.02	1.85708	2.379	422.2	650	659.84	473.25	2.49364	21.86	85.34
360	360.58	257.24	1.88543	2.626	393.4	660	670.47	481.01	2.50985	23.13	81.89
370	370.67	264.46	1.91313	2.892	367.2	670	681.14	488.81	2.52589	24.46	78.61
380	380.77	271.69	1.94001	3.176	343.4	680	691.82	496.62	2.54175	25.85	75.50
390	390.88	278.93	1.96633	3.481	321.5	690	702.52	504.45	2.55731	27.29	72.56
400	400.98	286.16	1.99194	3.806	301.6	700	713.27	512.33	2.57277	28.80	69.76
410	411.12	293.43	2.01699	4.153	283.3	710	724.04	520.23	2.58810	30.38	67.07
420	421.26	300.69	2.04142	4.522	266.6	720	734.82	528.14	2.60319	32.02	64.53
430	431.43	307.99	2.06533	4.915	251.1	730	745.62	536.07	2.61803	33.72	62.13
440	441.61	315.30	2.08870	5.332	236.8	740	756.44	544.02	2.63280	35.50	59.82

1. p_t and v_t data for use with Eqs. 6.43 and 6.44, respectively.

power plant, by :Prof. Dr. Adil Alkumait

Tables in SI Units 757

Table A-22

Gas properties

TABLE	A-22	(Continued)
-------	------	-------------

				$T(\mathbf{K}$), h and $u(kJ/$	kg), <i>s</i> ° (l	kJ/kg · K)				
				when $\Delta s = 0^1$						when $\Delta s = 0$	
Т	h	и	s°	$p_{\rm f}$	vr	Т	h	и	s°	$p_{\rm r}$	$v_{\rm r}$
750	767.29	551.99	2.64737	37.35	57.63	1300	1395.97	1022.82	3.27345	330.9	11.275
760	778.18	560.01	2.66176	39.27	55.54	1320	1419.76	1040.88	3.29160	352.5	10.747
770	789.11	568.07	2.67595	41.31	53.39	1340	1443.60	1058.94	3.30959	375.3	10.247
780	800.03	576.12	2.69013	43.35	51.64	1360	1467.49	1077.10	3.32724	399.1	9.780
790	810.99	584.21	2.70400	45.55	49.86	1380	1491.44	1095.26	3.34474	424.2	9.337
800	821.95	592.30	2.71787	47.75	48.08	1400	1515.42	1113.52	3.36200	450.5	8.919
820	843.98	608.59	2.74504	52.59	44.84	1420	1539.44	1131.77	3.37901	478.0	8.526
840	866.08	624.95	2.77170	57.60	41.85	1440	1563.51	1150.13	3.39586	506.9	8.153
860	888.27	641.40	2.79783	63.09	39.12	1460	1587.63	1168.49	3.41247	537.1	7.801
880	910.56	657.95	2.82344	68.98	36.61	1480	1611.79	1186.95	3.42892	568.8	7.468
900	932.93	674.58	2.84856	75.29	34.31	1500	1635.97	1205.41	3.44516	601.9	7.152
920	955.38	691.28	2.87324	82.05	32.18	1520	1660.23	1223.87	3.46120	636.5	6.854
940	977.92	708.08	2.89748	89.28	30.22	1540	1684.51	1242.43	3.47712	672.8	6.569
960	1000.55	725.02	2.92128	97.00	28.40	1560	1708.82	1260.99	3.49276	710.5	6.301
980	1023.25	741.98	2.94468	105.2	26.73	1580	1733.17	1279.65	3.50829	750.0	6.046
1000	1046.04	758.94	2.96770	114.0	25.17	1600	1757.57	1298.30	3.52364	791.2	5.804
1020	1068.89	776.10	2.99034	123.4	23.72	1620	1782.00	1316.96	3.53879	834.1	5.574
1040	1091.85	793.36	3.01260	133.3	22.39	1640	1806.46	1335.72	3.55381	878.9	5.355
1060	1114.86	810.62	3.03449	143.9	21.14	1660	1830.96	1354.48	3.56867	925.6	5.147
1080	1137.89	827.88	3.05608	155.2	19.98	1680	1855.50	1373.24	3.58335	974.2	4.949
1100	1161.07	845.33	3.07732	167.1	18.896	1700	1880.1	1392.7	3.5979	1025	4.761
1120	1184.28	862.79	3.09825	179.7	17.886	1750	1941.6	1439.8	3.6336	1161	4.328
1140	1207.57	880.35	3.11883	193.1	16.946	1800	2003.3	1487.2	3.6684	1310	3.944
1160	1230.92	897.91	3.13916	207.2	16.064	1850	2065.3	1534.9	3.7023	1475	3.601
1180	1254.34	915.57	3.15916	222.2	15.241	1900	2127.4	1582.6	3.7354	1655	3.295
1200	1277.79	933.33	3.17888	238.0	14.470	1950	2189.7	1630.6	3.7677	1852	3.022
1220	1301.31	951.09	3.19834	254.7	13.747	2000	2252.1	1678.7	3.7994	2068	2.776
1240	1324.93	968.95	3.21751	272.3	13.069	2050	2314.6	1726.8	3.8303	2303	2.555
1260	1348.55	986.90	3.23638	290.8	12.435	2100	2377.4	1775.3	3.8605	2559	2.356
1280	1372.24	1004.76	3.25510	310.4	11.835	2150	2440.3	1823.8	3.8901	2837	2.175
						2200	2503.2	1872.4	3.9191	3138	2.012
						2250	2566.4	1921.3	3.9474	3464	1.864

Source: Tables A-22 are based on J. H. Keenan and J. Kaye, Gas Tables, Wiley, New York, 1945.

power plant, by :Prof. Dr. Adil Alkumait